

International Journal of Pharmaceutical Sciences and Drug Analysis

E-ISSN: 2788-9254 P-ISSN: 2788-9246 Impact Factor (RJIF): 6.03 IJPSDA 2025; 5(2): 135-141 www.pharmacyjournal.info

Received: 11-08-2025 Accepted: 15-09-2025

Nirmala G

M. Pharm Student,
Department of Pharmaceutical
Analysis, Adhiparasakthi
College of Pharmacy,
(Affiliated to The Tamil Nadu
Dr. M.G.R. Medical
University, Chennai)
Melmaruvathur, Tamil Nadu,
India

Murugan S

Associate Professor,
Department of Pharmaceutical
Analysis, Adhiparasakthi
College of Pharmacy,
(Affiliated to The Tamil Nadu
Dr.M.G.R. Medical University,
Chennai) Melmaruvathur,
Tamil Nadu, India

Vetrichelvan T

HOD cum Dean Research, Department of Pharmaceutical Analysis, Adhiparasakthi College of Pharmacy, (Affiliated to The Tamil Nadu Dr.M.G.R. Medical University, Chennai) Melmaruvathur, Tamil Nadu, India

Correspondence

M. Pharm Student,
Department of Pharmaceutical
Analysis, Adhiparasakthi
College of Pharmacy,
(Affiliated to The Tamil Nadu
Dr.M.G.R. Medical University,
Chennai) Melmaruvathur,
Tamil Nadu, India

Stability indicating UV-spectrophotometric method development and validation of iguratimod

Nirmala G, Murugan S and Vetrichelvan T

Abstract

In this study, a novel UV-spectrophotometric method was developed and validated for the quantitative estimation of Iguratimod in bulk and tablet formulations using zero-order and first-order derivative techniques. The method demonstrated simplicity, precision, and accuracy. A 10 $\mu g/ml$ Iguratimod solution was prepared and scanned within the UV range of 200-400 nm. Quantification was performed at 258 nm for the zero-order and 270 nm for the first-order derivative method. Linearity was observed over 2-10 $\mu g/ml$ (R² = 0.9997) for zero-order and 5-25 $\mu g/mL$ (r² > 0.9998) for first-order methods. The percentage recovery ranged from 99.52% to 100.66%, confirming accuracy. The LOD and LOQ were 0.4553 and 1.3799 $\mu g/mL$ (zero-order) and 0.9443 and 2.8615 $\mu g/mL$ (first-order), respectively. The validated method proved reliable, efficient, and suitable for routine quality control and quantitative analysis of Iguratimod in pharmaceutical dosage forms.

Keywords: Iguratimod, UV-visible spectrophotometric methods, method validation, quantitative analysis, forced degradation studies

Introduction

Pharmaceutical analysis is a key discipline within practical chemistry that focuses on identifying, quantifying, purifying, and characterizing chemical substances, along with separating the individual components of mixtures and determining their structural composition. These substances may exist either as pure compounds or as mixtures, formulated in various dosage forms. Validation of analytical methods forms the foundation of process validation, as a dependable measurement system is essential to confirm that a manufacturing process consistently performs as intended. Every newly established analytical technique must therefore be validated to ensure its precision, accuracy, and reliability. Among the various analytical tools available, spectrophotometric techniques are widely favored due to their simplicity, cost-effectiveness, and operational convenience when compared with advanced methods such as chromatography and electrophoresis [1-7].

Beer's and Lambert's law (BLL) [8] describes about relationship between the properties of medium where the light passes through is also known as the Beer-Lambert-Bouguer principle. BLL is popular because it is helpful in integrate the calculation system, explain proportional correlation between the detected light intensity and absorbance of the medium and it demands minimal computational effort power as compared with other models like diffusion approximation [9, 10].

Iguratimod (IGU) is an innovative synthetic low-molecular-weight disease-modifying antirheumatic drug, currently approved exclusively in Japan and China. ^[11]. IUPAC name for Iguratimod is N- [(formylamino)-4-oxo-6-phenoxy-4Hchromen7-yl] methane sulfoanamide ^[12]

Fig 1: Chemical Structure of Iguratimod [12]

A review of the literature indicated the existence of a few analytical approaches for Iguratimod determination, including HPLC in rat plasma [13], HPLC in human plasma [14] and HPTLC [15] for both bulk drug and tablet formulations. In this study, a straightforward, cost-effective, and rapid spectrophotometric method was developed for the quantification of Iguratimod in bulk material and tablets. The proposed method was validated in terms of accuracy, precision, linearity, LOD, LOQ, and robustness. Therefore, the primary aim of this research was to develop and validate a simple UV-spectrophotometric method for the estimation of Iguratimod in bulk and tablet dosage forms in accordance with ICH guidelines.

Materials and Method Experimental apparatus

Analysis carried out on Shimadzu double beam UV-Visible spectrophotometer (Model UV-1700) high scanning spectrophotometer (200-400nm) with spectral band width of 1 nm and Lab India 3000 double beam Ultra-Visible Spectrophotometer were used for all spectral measurements. Single pan electronic balance (Model Shimadzu AUX-220) for weighing purpose, sonication of the solutions was carried out using an Ultrasonic cleaner (2100 MH) and hot air oven InfraDIGI-250 °C were used for the study.

Chemicals and reagents

The reference standard of Iguratimod API was supplied as gift sample from Chennai. Tablet sample with label claim 25 mg per tablet were purchased from Medplus.

Chemicals such as $0.1\ N\ H_2SO_4,\ 0.1\ N\ KOH,\ HPLC$ grade water, 0.3% Hydrogen peroxide, 10% Sodium bisulfate.

UV- Spectrophotometry Solvent system determination

The solubility profile of Iguratimod was evaluated across different solvents includes distilled water, ethanol, methanol, chloroform, acetone, dimethyl formamide, acetonitrile, 0.1 M Sodium hydroxide, 0.1 M Hydrochloric acid, petroleum ether, 0.1 N Sulfuric acid, 0.1 N Potassium Hydroxide, 0.3% Hydrogen peroxide and 10% Sodium bisulfate. From the study, the selected solvent was Methanol.

Selection of wavelength

The UV Spectrum of Iguratimod was analysed for zero order and first order derivative method. The maximum absorbance for zero order method was 258 nm and for first order derivative was 270 nm. These selected wavelengths ensure precise and accurate quantification for Iguratimod.

Preparation of Reference Stock Solution:

Reference stock solution of Iguratimod (1000 $\mu g/ml$) was obtained by dissolving 25 mg of Iguratimod in 25 ml of methanol.

Method 1: Zero Order Method Preparation of working stock solution

From the prepared stock, 2 ml was pipetted into a 10 mL flask and diluted with solvent to achieve 200 μ g/ml.

Selection of wavelength

A working solution of Iguratimod (10 μ g/ml) was prepared from the stock solution and scanned over the UV range of 200-400 nm. Based on the obtained spectra, 258 nm was

selected as the analytical wavelength for quantification. Various standard concentrations of Iguratimod were prepared in 10 ml volumetric flasks by accurately transferring appropriate volumes of the working solution and diluting to the mark with methanol. These solutions were scanned in spectrum mode within 200-400 nm. Absorbance data from the zero-order spectra at 258 nm were recorded, and a calibration curve was constructed for Iguratimod over the concentration range of 2-10 µg/ml.

Method 2: First Order Derivative Method Preparation of working stock solution

From the Reference stock solution, 1 ml was pipetted and transferred into 10 ml volumetric flask to getting the concentration $100 \mu g/ml$.

Selection of wavelength

In this method, a 10 μ g/ml solution of Iguratimod was prepared from the working stock solution, diluted with methanol, and scanned in spectrum mode over the 200-400 nm range. Based on the obtained spectra, 270 nm was selected as the analytical wavelength. Various standard concentrations of Iguratimod were prepared in 10 ml volumetric flasks by accurately transferring measured volumes of the working solution and diluting to the mark with methanol. These solutions were scanned in spectrum mode across 200-400 nm, and absorbance values from the first-order derivative spectra at 270 nm were recorded. A calibration curve for Iguratimod was then constructed over the concentration range of 5-25 μ g/ml.

Quantification of Tablets

Twenty tablets were accurately weighed, powdered, and an amount equivalent to 25 mg of Iguratimod was transferred into a 25 ml volumetric flask. The powder was dissolved in methanol and sonicated for 15 minutes, followed by shaking and dilution to the mark with methanol. The resulting solution was filtered through Whatman filter paper. From this stock solution, 2 ml was pipetted into a 10 ml volumetric flask and diluted with methanol. Subsequently, 0.2 ml of this solution was transferred to another 10 ml volumetric flask and diluted to the mark with methanol to obtain a final concentration of 4 μ g/ml, which was used for the zero-order method, with absorbance measured at 258 mm

For the first-order derivative method, 1 ml of the original stock solution was pipetted into a 10 ml volumetric flask and diluted with methanol. From this solution, 1 ml was further transferred to another 10 ml volumetric flask and diluted with methanol to obtain a 10 μ g/ml solution. The spectra were recorded and measurements were taken at 270 nm for Iguratimod

Analytical Procedure Validation [16]

The Developed Analytical Method was Validated as per the ICH guidelines, which includes the parameters such as Linearity, Precision, Accuracy, Repeatability, Limit of Detection and Limit of Quantification.

Linearity studies

Determination of Five points calibration curve for Iguratimod were obtained from the working stock solutions 200 μ g/ml (Zero order) and 100 μ g/ml (First order).

For zero order method, 0.1, 0.2, 0.3, 0.4 & 0.5 ml was

pipetted from the 200 μ g/ml stock, which was transferred into five 10 mL volumetric flasks and adjusted to the final volume using methanol to achieve the desired concentrations 2, 4, 6, 8 & 10 μ g/ml solutions. The absorbance of these five concentrations were measured at 258 nm.

For First order derivative method, 0.5, 1, 1.5, 2 & 2.5 ml were pipetted drawn from the 100 $\mu g/ml$ reference solution, which was individually transferred into five 10 mL volumetric flasks and diluted to the mark with methanol to achieve the desired concentrations 5, 10, 15, 20 & 25 $\mu g/ml$ solutions. The absorbance values for these concentrations were determined at 270 nm.

Precision

Precision was evaluated in terms of both intraday and interday variability. Iguratimod solutions at concentrations of 4 $\mu g/ml$ and 10 $\mu g/ml$ were analyzed six times each for the zero-order and first-order derivative methods, respectively. For intraday precision, the two concentrations were assessed six times within the same day, whereas interday precision was determined by analyzing the same concentrations over six consecutive days.

Accuracy

Accuracy of the zero-order and first-order methods was assessed at three levels: 50%, 100%, and 150%. Known amounts of standard Iguratimod were spiked into pre-analyzed sample solutions at each level. The absorbance was measured and recorded at 258 nm for the zero-order method and 270 nm for the first-order method.

Limit of Detection and Limit of Quantification

Various approaches exist for the determination of LOD and LOQ, depending on whether the analytical method is instrumental or non-instrumental. In this study, the LOD and LOQ were calculated using the following equations:

$$LOD = \frac{3.3 \times Standard deviation}{Slope}$$

$$LOQ = \frac{10 \times Standard deviation}{Slope}$$

Ruggedness

The ruggedness of the proposed method was assessed using 4 μ g/mL (zero-order) and 10 μ g/mL (first-order) Iguratimod solutions. The analyses were performed on aliquots from a uniform batch by two different analysts under varied operational and environmental conditions.

Forced Degradation Studies [17, 24]

Stability studies are conducted to evaluate the appropriate storage conditions and shelf life of a pharmaceutical product. According to the Committee for Proprietary Medicinal Products (CPMP) guidelines, these studies assess how the quality of the drug substance or drug product changes over time under various environmental conditions. [17,18]

Forced degradation studies, also referred to as stress testing, involve assessing the stability of drug substances and drug products under conditions more severe than those used in

accelerated stability studies [19]. Such studies aid in the identification of degradation products, providing insights into the drug's degradation pathways and inherent stability. Additionally, they help in demonstrating the stability-indicating capability of analytical methods, in accordance with ICH guidelines on stability testing [20]. In this study, Iguratimod was subjected to various stress conditions, including acidic, basic, hydrolytic, oxidative, reductive, photolytic, thermal, and UV light exposure.

For stress testing, Iguratimod's working stock solution concentration (200 µg/ml) was utilized.

Acid Degradation [21]

1 ml of 0.1 N sulfuric acid was added to a 10 ml clean volumetric flask from that 0.2 ml of the working stock solution had been pipetted out. After allowing the mixture to degrade for 24 hours, 1 ml of 0.1N KOH was added to neutralize the solution. After adding methanol to get the volume up to volume, the sample's absorbance was measured at 258 nm.

Base Degradation [21]

A 10 ml clean volumetric flask was filled with 0.2 ml of stock solution in order to measure the alkaline degradation of Iguratimod. 1 ml of 0.1N KOH was added to cause forced degradation, and the mixture was let to stand for 24 hours. 1 ml of 0.1 N sulfuric acid was then used to neutralize the solution, and methanol was added to bring it up to volume. At 258 nm, the sample's absorbance was measured.

Hydrolytic Degradation Studies [22]

In order to perform hydrolytic degradation, 0.2 ml of the stock solution was placed into a 10 ml clean volumetric flask. 3 ml of HPLC-grade water were then added to start the forced degradation process. After a 24-hour rest, the solution was diluted with methanol. After that, 1 ml of the solution was pipetted into a 10 ml volumetric flask, and methanol was added to bring it up to volume. At 258 nm, the sample's UV absorbance was measured.

Oxidative degradation Studies [23]

A 10 ml clean volumetric flask containing 0.2 ml of stock solution was filled with 1 ml of 0.3% hydrogen peroxide to induce degradation in order to assess oxidative degradation. After letting the combination rest for a full day, it was properly mixed and diluted with methanol as needed. At 258 nm, the sample's absorbance was measured.

Reduction Degradation Studies [22]

0.2 ml of the stock solution was pipetted into a 10 ml clean volumetric flask for the reduction degradation investigations. By adding 1 ml of 10% sodium bisulfate, forced degradation study were started. After being undisturbed for twenty-four hours, the mixture was diluted with methanol. The sample's absorbance was measured at 258 nm.

Photolytic Degradation Studies [24]

Iguratimod was weighed and left in the sunlight for 4 hours. After the exposure, $200~\mu g/ml$ was made, 0.2~ml of the stock solution was put into a 10~ml clean volumetric flask, and methanol was added to dilute the sample to the appropriate level. At 258~nm, the sample's UV absorbance was measured.

Thermal Degradation Studies [24]

A quantity of Iguratimod that had been weighed was dried for 24 hours at 70°C. 0.2 ml of a prepared 200 $\mu g/ml$ stock solution was pipetted into a 10 ml clean volumetric flask, and the sample was diluted with methanol until it reached the desired concentration. The sample's absorbance was measured at 258 nm.

UV Degradation Studies [24]

A weighed amount of the standard was exposed to UV radiation for 24 hours. 0.2 ml of the resultant sample solution was diluted with methanol and then transferred into a 10 ml clean volumetric flask. The sample solution's absorbance was measured at 258 nm.

Results and Discussion

The method was validated in accordance with the stringent criteria for the validation of analytical techniques for the determination of linearity, precision, accuracy, LOD, LOQ, and ruggedness set forth by the International Conference on Harmonization (ICH). The spectrum of Iguratimod for zero order and first order derivative were shown in Figure 2 & 4.

Method 1: Zero order method

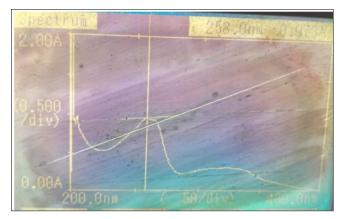


Fig 2: Zero order spectrum of Iguratimod at 258 nm

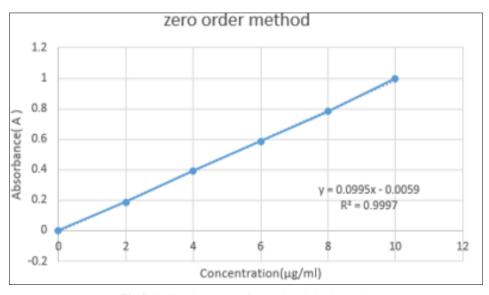


Fig 3: Calibration curve of Iguratimod (2-10 $\mu g/ml$)

Method 2: First order derivative method

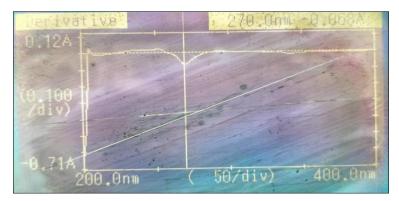
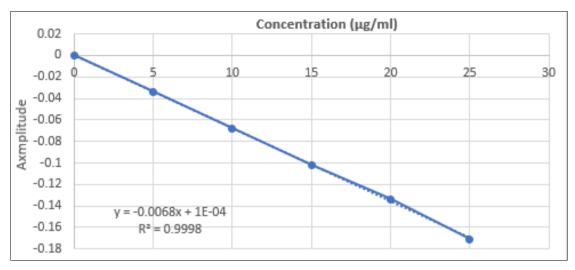



Fig 4: First order derivative spectrum of Iguratimod at 270 nm

Fig 5: Calibration curve of Iguratimod (5-25 μg/ml)

Table 1: Optical Characterisation of Iguratimod

Parameters	Zero order method - Iguratimod (258nm)	First order derivative method- Iguratimod (270 nm)
Regression equation(Y=mx+c)	Y = 0.0995x - 0.0059	Y = -0.0068x + 0.0001
Slope (m)	0.0995	-0.0068
Intercept (c)	-0.0059	0.0001
Correlation coefficient (R ²)	0.9997	0.9998

Linearity

The calibration curve was linear across the concentration ranges of 2-10 $\mu g/ml$ for the Zero order method and 5-25

 μ g/ml for the First order method, according to the regression data which was shown in Figure 3 & 5.

Table 2: Linearity table

Method	Concentration	Wavelength	\mathbb{R}^2
Zero order method	2-10 μg/ml	258 nm	0.9997
First order Derivative method	5-25 ug/ml	270 nm	0.9998

Precision

The results obtained from method-1 and method-2 for repeatability in terms of% RSD should be < 2 precise

characteristics of the developed analytical method. The results shown in Table 3.

 Table 3: Quantification of Iguratimod Formulation

Methods	Sample number	Label claim (mg/tab)	Amount present (mg/tab)	% purity	Mean purity* (%w/v)	SD	%RSD
	1	25	25.05	100.20			
	2	25	25.29	101.16			
	3	25	25.30	101.20			
Zero order method	4	25	25.19	100.76	100.70	0.4212	0.4202
	5	25	25.06	100.24	100.70	0.4313	0.4283
	6	25	25.16	100.64			
	1	25	25.04	100.16			
	2	25	25.20	100.80			
First order derivative	3	25	24.82	99.28			
method	4	25	24.99	99.96	100.44	0.0150	0.0116
	5	25	25.22	100.88	100.44	0.8152	0.8116
	6	25	25.40	101.60			

For Intraday and Interday precision studies carried for the replicates of the concentrations 4 μ g/ml (zero order) and 10

 $\mu g/ml$ (first order). The results of intraday and interday precision was shown in Table 4.

Table 4: Intraday and Interday of Iguratimod Formulation

Madhada	Commission	Sample number Label claim (mg/tab)	% purity (%w/v)		SD		% RSD	
Methods	Sample number	Label claim (mg/tab)	Intraday	Interday	Intraday	Interday	Intraday	Interday
	1	25	100.04	99.56				
	2	25	100.02	100.20				
	3	25	100.76	100.96				
Zero Order Method	4	25	100.92	101.32	0.3782	0.8098	0.3767	0.8054
	5	25	100.20	101.44				

	6	25	100.44	99.76				
	1	25	101.60	99.40				
	2	25	100.76	99.28				
First Order Derivative Method	3	25	100.88	100.88				
	4	25	101.48	100.08	0.8626	0.6277	0.8566	0.6288
	5	25	100.20	99.96				
	6	25	99.28	99.28				

Accuracy (Recovery study)

50%, 100% 150%. The percentage recovery (%) was three levels shown in Table 5.

Accuracy was determined for three different phases i.e.

Table 5: Accuracy (Recovery Study)

Methods	% Conc	Sample Amount (µg/ml)	Amount spiked (µg/ml)	Estimated Amount* (µg/ml)	Recovered Amount* (µg/ml)	Average% recovery*	SD*	%RSD*
	50	4.00	2	6.01	2.01	100.50	1.0000	0.9950
Zero Order Method	100	4.00	4	7.98	3.98	99.50	0.3813	0.3834
	150	4.00	6	10.04	6.04	100.66	0.3350	0.3328
	50	10.00	5	14.976	4.976	99.52	1.1547	1.1601
First Order Method	100	10.00	10	20.06	10.06	100.60	0.8660	0.8608
	150	10.00	15	24.96	14.96	99.73	1.1547	1.1579

^{*}Mean of 3 observations

LOD & LOQ

The average of the absorbance standard deviation and "S, "

or the slope of the corresponding calibration curve, are used to determine the LOD and LOQ.

Table 6: Limit of Detection & Limit of Quantification

Drug	Methods	LOD (µg/ml)	LOQ (µg/ml)
I avvatim a d	Method 1	0.4553	1.3799
Iguratimod	Method 2	0.9443	2.8615

Ruggedness

The results of ruggedness were expressed in terms of% RSD

that must be less than 2. Ruggedness results were shown in Table 7.

 Table 7: Ruggedness Study of Iguratimod Formulation

Methods	Conditions	Average% Obtained*	SD*	%RSD*
	Analyst -1	101.11	0.5068	0.5012
	Analyst -2	100.84	0.7735	0.7670
Zero Order Method	Instrument -1	100.70	0.8184	0.8127
	Instrument -2	100.65	0.6467	0.6425
	Analyst-1	100.46	0.7902	0.7865
First Order Derivative	Analyst-2	100.07	0.9693	0.9686
Method	Instrument-1	100.30	1.0234	1.0203
Meniod	Instrument-2	100.50	0.7725	0.7686

^{*}Mean of 6 observations

Table 8: Forced degradation study data

Stress conditions	Study period	% Degradation
0.1 N Sulphuric Acid	24 hours	Not Degraded
0.1 N Potassium Hydroxide	24 hours	Not Degraded
HPLC grade water	24 hours	Not Degraded
0.3% Hydrogen Peroxide	24 hours	Not Degraded
10% Sodium bisulfate	24 hours	Not Degraded
Sunlight	04 hours	Not Degraded
Hot air oven (70 °C)	24 hours	Not Degraded
UV- Light	24 hours	Not Degraded

Table- 9: Advantages of developed methods

Remember the points to be	Advantages		
Novelty UV Spectrophotometric method was developed first time for Iguratimod drug in Pharmaceutical at			
Analytical technique parameter	Zero order method = 258 nm, First order method = 270 nm		
Solvent used	Methanol		
Simplicity	Easy to develop Standard UV- Spectrophotometric method		
Stability-indicating capability	There was no degradants found during different stress conditions		

Conclusion

Iguratimod was analyzed using the developed and validated UV-Spectrophotometric method, which was cost-effective, simple, reliable, robust, and dependable. It was used for both bulk and tablet dosage forms. The routine quality control of formulations containing iguratimod is carried out using this UV-Spectrophotometric Method.

The method was validated as per ICH guidelines with acceptable results for linearity, precision, accuracy, limit of detection, limit of quantification and ruggedness parameters. Forced Degradation studies carried under acid, base, hydrolytic, oxidative, reduction, photolytic, thermal and UV light degradation studies which helps in confirming the drug Iguratimod was stable over all stress conditions.

There was no significant interferences found in tablet formulation that confirms the methods was specific and applicable for the routine quality control of Iguratimod.

Hence, The Developed UV-Spectrophotometric method was more Suitable for periodic evaluation of quality control and stability- indicating study for Iguratimod. This method is more advantageous and simple analytical method for Pharmaceutical analysis of Iguratimod.

Acknowledgement

The management of ACMEC trust is hereby thanked by one of the author G. Nirmala for their support in doing this research.

Authors Contributions

All the authors contributed equally.

Conflict of Interests

Declared none.

References

- 1. Arikawa Y. Basic education in analytical chemistry. Analytical Sciences. 2001;17(Suppl):i571-i573.
- 2. Miller K, Synovec RE. Review of analytical measurements facilitated by drop formation technology. Talanta. 2000;51(5):921-933.
- 3. Bartle KD, Myers P. History of gas chromatography. TrAC Trends Anal Chem. 2002;21(9-10):547-553.
- 4. Laitinen HA. History of analytical chemistry in the U.S.A. Talanta. 1989;36(1-2):1-9.
- 5. Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications. 2nd ed. New York: John Wiley & Sons; 2000.
- Skoog DA, West DM, Holler FJ. Fundamentals of analytical chemistry. 5th ed. New York: Saunders College Publishing; 1988.
- 7. Haque MA, Narender B, Sravanthi C, Goud BR, Sony B, Deepshika R, Bakshi V. Development and validation of zero and first order spectrophotometric method for determination of levomilnacipran in bulk and formulation. J Pharm Sci Res. 2020;12(3):443-447.
- 8. Oshina I, Spigulis J. Beer-Lambert law for optical tissue diagnostics: current state of the art and the main limitations. J Biomed Opt. 2021;26(10):100901.
- 9. Contini D, Martelli F, Zaccanti G. Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory. Appl Opt. 1997;36(19):4587-4599.
- 10. Kienle A, Patterson MS, Wilson BC, Essenpreis M, Farrell TJ, Welch AJ, et al. Improved solutions of the

- steady-state and time-resolved diffusion equations for reflectance from semi-infinite turbid medium. J Opt Soc Am. 1997;14:246-254.
- 11. Xie S, Li S, Tian J, Li F. Iguratimod as a new drug for rheumatoid arthritis: current landscape. Front Pharmacol. 2020;11:73.
- 12. Balakrishanaiah P, Sultana A, Bairam R, Manjunath SY. Formation of newer analytical methods that have been verified for determining iguratimod in tablet dosage form. Int Arch Pharm Sci. 2025;12(1):395-400.
- 13. Han JP, Zhu ZH, Wu YZ, Qian W, Li ZY, Nishikawa M, Sakaki T, Yang CQ. Preparation of a major metabolite of iguratimod and simultaneous assay of iguratimod and its metabolite by HPLC in rat plasma. Iran J Pharm Res. 2019;18(2):631-641.
- 14. Damle MC, Ghode SP. Determination of iguratimod in human plasma by HPLC method. World J Pharm Res. 2018;7(14):404-413.
- 15. Gandhi SV, Jagtap M. Development and validation of stability indicating HPTLC method for determination of iguratimod in bulk and pharmaceutical dosage form. Int J Pharm Pharm Sci. 2022;14(11):1-7.
- 16. International Conference on Harmonisation (ICH). Validation of analytical procedures: methodology. ICH Q2(R1). Geneva: ICH; 1996. p.1-8.
- 17. Sehrawat R, Maithani M, Singh R. Regulatory aspects in development of stability-indicating methods: a review. Chromatographia. 2010;72(1):1-6.
- 18. Sharma MK, Murugesan M. Forced degradation study: an essential approach to develop stability indicating method. J Chromatogr Sep Tech. 2017;8(1):349.
- 19. Klick S, Muijselaar PG, Waterval J, Eichinger T, Korn C, Gerding TK, *et al.* Stress testing of drug substances and drug products. Pharm Technol. 2005;29(2):48-66.
- 20. International Conference on Harmonisation (ICH). Stability testing of new drug substances and products, Q1A(R2), current step 4. 2003;4:1-24.
- 21. Bhavyasri K, Mounika C, Sumakanth M. Method development, validation and forced degradation studies for determination of tigecycline in bulk and pharmaceutical dosage form using UV spectroscopy. J Young Pharm. 2020;12(2):63-66.
- 22. Gaddey PK, Sundararajan R. Development of a stability indicating UPLC method for the determination of tirbanibulin in bulk and its pharmaceutical dosage form. J Pharm Res Int. 2024;21(1):25-35.
- 23. Peraman R, Lalitha KV, Mallikarjuna Raja NB, Routhu HB. Identification of degradation products and a stability-indicating RP-HPLC method for the determination of flupirtine maleate in pharmaceutical dosage forms. Sci Pharm. 2014;82:281-293.
- 24. Patel SA, Sayyed N, Mobina I, Manjra MU, Ahmed A, Khan GJ. An eco-friendly RP-HPLC and UV-method development and validation for an estimation of tolvaptan in bulk and tablet dosage form followed by forced degradation studies. J Pharm Res Int. 2021;33(42B):271-286.